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Abstract

We show that the mapping torus of a hyperbolic group by a hy-
perbolic automorphism is cubulable. Along the way, we (i) give an
alternate proof of Hagen and Wise’s theorem that hyperbolic free-by-
cyclic groups are cubulable, and (ii) extend to the case with torsion
Brinkmann’s thesis that a torsion-free hyperbolic-by-cyclic group is
hyperbolic if and only if it does not contain Z2-subgroups.

1 Introduction

In this note, we prove the following:

Theorem (Corollary 5.4). Hyperbolic hyperbolic-by-cyclic groups are cubulable.

A hyperbolic-by-cyclic group is a semidirect product G ¸ Z of a hyper-
bolic group G with the integers Z. A group is cubulable if it admits an
isometric action on a CAT(0) cube complex that is cubical, proper, and co-
compact. The repetition in the statement is intended: we assume that both
G and G ¸ Z are hyperbolic (equivalently, G is hyperbolic and G ¸ Z does
not contain Z2, see Corollary 5.3). This restricts what G can be.

Emblematic cases of our theorem are known by outstanding works.
First and foremost, if G is a closed surface group, then any hyperbolic
extension G ¸ Z is a closed hyperbolic 3-manifold group [Thu82]. Its
cubulation is due to independent works of Bergeron and Wise [BW12]
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— using Kahn and Markovic’s surface subgroup theorem [KM12], and
Dufour [Duf12] — using the immersed quasiconvex surfaces of Cooper,
Long, and Reid [CLR94]. Second, when G is free, Hagen and Wise cubu-
lated the mapping torus G ¸ Z of a fully irreducible hyperbolic automor-
phism [HW16].

Hagen and Wise also treat extensions of free groups by arbitrary hyper-
bolic automorphisms in [HW15a], a notoriously difficult analysis. We do
not rely on, nor follow, that work. Instead, our proof uses the emblematic
cases above in a telescopic argument that encompasses the case when G is
a torsion-free hyperbolic group (see Theorem 4.2). It provides a hopefully
appreciated alternative.

We adopt a relative viewpoint and bootstrap the relative cubulation
of certain free-product-by-cyclic groups by the first two named authors
[DM]; this uses recent work of Groves and Manning on improper actions
on CAT(0) cube complexes [GM] along with the malnormal combination
theorem of Hsu and Wise [HW15b]. The need for the theory of train tracks
(of free groups or free product automorphisms, see [BH92, FM15]) is lim-
ited to absolute train tracks for the fully irreducible case; it is encapsulated
in the relative cubulation of free-product-by-cyclic groups [DM].

For a hyperbolic group G possibly with torsion, if there exists a hy-
perbolic extension G ¸ Z, then G is virtually torsion-free (and residually
finite) by Proposition 5.2. In particular, G ¸ Z is virtually cubulable hy-
perbolic, and hence cubulable [Wis21, Lem. 7.14]. As a consequence, we
have:

Corollary. If a hyperbolic-by-cyclic group Γ is hyperbolic, then:

1. Γ is virtually (compact) special [Ago13];

2. Γ is Z-linear and its quasiconvex subgroups are separable [HW08];

3. Γ virtually surjects onto F2 [AM15];

4. Γ is conjugacy separable [MZ16]; and

5. Γ admits Anosov representations [DFWZ23].

We end this introduction with a question. Proposition 5.2 states that
a hyperbolic group is virtually a free product of free and surface groups
whenever it admits a hyperbolic automorphism. However, the converse
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is false as can be seen from a hyperbolic triangle group or the free product
of two finite groups — these have finite outer automorphism groups.

Question. Is there an algebraic characterisation of hyperbolic groups that admit
hyperbolic automorphisms?

Note that Pettet characterised virtually free groups with finite outer
automorphism groups [Pet97].
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2 Free factor systems

A free decomposition of a group G is an isomorphism G – A1 ˚ ¨ ¨ ¨ ˚ Ak ˚ Fr,
where k ě 0, r ě 0, each peripheral free factor Ai is not trivial, and Fr is free
with rank r. We call A = (A1, . . . , Ak) a free factor system of G; it is proper
unless k ď 1 and r = 0. The integer k + r is the Kurosh co-rank of the free
factor system A. A nontrivial group is freely indecomposable if its free factor
systems have Kurosh co-rank 1.

Assume G is finitely generated for the rest of this section. A Grushko
decomposition of G is a free decomposition whose free factor system A has
maximal Kurosh co-rank and peripheral free factors Ai are not Z; in that
case, we call A a Grushko free factor system and its Kurosh co-rank is the
Kurosh–Grushko rank of G.

Recall the preorder of free factor systems of G: a free factor system
B = (B1, . . . , Bℓ) is lower than A if each Bj is conjugate in G to a subgroup
of some Ai. In this case, a free decomposition with peripherals A refines
to one with peripherals B (as seen by the actions of Ai on TB, a Serre tree
whose nontrivial vertex stabilisers are exactly the conjugates of all Bj), and
the Kurosh co-rank of B is at least that of A (see [DL22, Lem. 1.1] for a
similar argument); if it is equal, then A is also lower than B.
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Let B = (B1, . . . , Bℓ) be a free factor system of G. A proper (G,B)-free
factor is a nontrivial point stabiliser of a nontrivial action of G on a tree,
for which edge stabilisers are trivial, and in which each Bj is elliptic. In
other words, it is a peripheral free factor Ai in a free factor system A that
is higher than B in the preorder.

A minimal free factor system in this preorder is a Grushko free factor
system; it is unique up to the preorder’s equivalence relation. So any au-
tomorphism preserves the Grushko free factor system (A1, . . . , Ak), i.e. it
sends each Ai to a conjugate of some Aj. A free factor system is periodic
with respect to ϕ P Aut (G) if some (positive) power of ϕ preserves it.

Lemma 2.1. Suppose G is a finitely generated group. If B = (B1, . . . , Bℓ) is a
proper free factor system, then each Bi has Kurosh–Grushko rank strictly lower
than the Kurosh–Grushko rank of G.

If G has Kurosh–Grushko rank ě 2, then any automorphism ϕ : G Ñ G has
a free factor system that is maximal among ϕ-periodic proper free factor systems.

Proof. Since B is proper, G – Bi ˚ H for some nontrivial group H. By
uniqueness of the Grushko decomposition, the Kurosh–Grushko rank of
G is the sum of those of Bi and H.

For the second assertion, as the Kurosh–Grushko rank is at least 2,
the Grushko free factor system is proper and ϕ-periodic. Restricting to
ϕ-periodic proper free factor systems, any one with the lowest Kurosh co-
rank is maximal in the preorder.

3 Ingredients

Let G be a torsion-free group. For this section, we assume:

• a free factor system B = (B1, . . . , Bℓ) has Kurosh co-rank ě 3;

• an automorphism ψ : G Ñ G preserves B, denoted ψ P Aut (G,B);

• ψ P Aut (G,B) is relatively fully irreducible, i.e. any ψ-periodic (up to
conjugacy) proper (G,B)-free factor must be conjugate to some Bi;

• ψ P Aut (G,B) is relatively atoroidal, i.e. any ψ-periodic conjugacy
class of nontrivial elements in G intersects some Bi.

Here is an equivalent definition of relatively fully irreducible:
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Lemma 3.1. An automorphim ψ P Aut (G,B) is relatively fully irreducible if
and only if B is a maximal ψ-periodic proper free factor system.

Proof. If some ψ-periodic proper free factor system (A1, . . . , Ak) is strictly
higher than B = (B1, . . . , Bℓ) in the preorder, then some Ai is a ψ-periodic
proper (G,B)-free factor that is not conjugate to any Bj.

Conversely, if some ψ-periodic proper (G,B)-free factor A1 is not con-
jugate to any Bi, then the ψ-periodic free factor system (A1) can be ex-
tended to a ψ-periodic proper free factor system (A1, . . . , Ak) that is strictly
higher than B by including some (conjugates of) Bi.

For h P G, adh : G Ñ G denotes the inner automorphism g ÞÑ hgh´1.
For a peripheral free factor Bi, let ki ě 1 be the smallest integer such that
ψki(Bi) = g´1

i Bigi for some gi P G. The peripheral suspension Bi ¸ Z is the
suspension of Bi by adgi ˝ ψki |Bi : Bi Ñ Bi; this group naturally embeds in
G ¸ψ Z — one can verify using normal forms that the natural homomor-
phism Bi ¸ xsy Ñ G ¸ψ xty that maps s ÞÑ gitki is injective.

The first two named authors recently gave a relative cubulation (intro-
duced in [EG20]) of the mapping torus of a relatively fully irreducible rel-
atively atoroidal automorphism. Their proof is adapted from Hagen and
Wise’s cubulation of hyperbolic irreducible free-by-cyclic groups [HW16].

Theorem 3.2 (cf. [DM, Thm. 1.1]). Under this section’s assumptions, the map-
ping torus G ¸ψ Z acts cocompactly on a CAT(0) cube complex, where each cell
stabiliser is either trivial or conjugate to a finite index subgroup of some peripheral
suspension Bi ¸ Z.

The cited theorem has an additional assumption, absence of twinned
subgroups: two subgroups H1 ‰ H2 of G are twinned in B if they are
conjugates of some Bj, Bk and adg ˝ ψn(Hi) = Hi (i = 1, 2) for some n ě 1
and g P G. This assumption ensures the family of peripheral suspensions
is malnormal (for relative hyperbolicity [DL22, Thm. 0.1]), but Guirardel
remarked that it is redundant:

Lemma 3.3 (Guirardel). As B has Kurosh co-rank ě 3 and ψ P Aut (G,B) is
relatively fully irreducible, there are no twinned subgroups in B.

Our proof of the lemma uses objects (expanding train tracks, limit trees,
geometric trees of surface type) that we do not define here for the sake of
brevity; we refer the reader to the cited literature for each.
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Proof. The automorphism ψ is represented by an expanding irreducible
train track (see [DL22, Sec. 1.3]). Projectively iterating the train track pro-
duces the limit (G,B)-tree T and a ψ-equivariant expanding homothety
h : T Ñ T (see [BFH97, p. 232]). Note that nontrivial point stabilisers of
T are ψ-periodic (up to conjugacy) by the finiteness of G-orbits of branch
points in T [Hor17, Cor. 5.5] and the ψ-equivariance of h.

Let H ď G be a nontrivial nonperipheral point stabiliser of T — nonpe-
ripheral means the subgroup is not conjugate to some Bi. Then no proper
(G,B)-free factor contains H — otherwise, the smallest such factor would
be nonperipheral and ψ-periodic, yet ψ P Aut (G,B) is relatively fully ir-
reducible. Thus T is geometric of surface type [Hor17, Sec. 6.2, Lem. 6.8]
and the point stabiliser H is cyclic [Hor17, Prop. 6.10]. As H was arbitrary,
all nonperipheral point stabilisers of T are cyclic; therefore, there are no
twinned subgroups in B because they would generate a noncyclic nonpe-
ripheral T-elliptic subgroup by the ψ-equivariance of h.

We will use the following theorem of Groves and Manning to upgrade
relative cubulations in the next section.

Theorem 3.4 (cf. [GM, Thm. D]). If a hyperbolic group Γ acts cocompactly on a
CAT(0) cube complex so that cell stabilisers are quasiconvex and cubulable, then
Γ is cubulable.

The cited theorem has “virtually special” in place of “cubulable”. Since
virtually cubulable hyperbolic groups are cubulable [Wis21, Lem. 7.14],
the properties “virtually special” and “cubulable” are equivalent for hy-
perbolic groups by Agol’s theorem [Ago13]. In particular, for hyperbolic
groups, being cubulable is a commensurability invariant.

Finally, for sporadic cases when the Kurosh co-rank is 2, we will need
a specialisation of Hsu and Wise’s malnormal combination theorem:

Theorem 3.5 (cf. [HW15b, Cor. C]). Suppose Γ = Γ1 ˚xcy Γ2 or Γ1˚xcy is
hyperbolic and xcy is an infinite cyclic malnormal subgroup of Γ. If each Γi is
cubulable, then Γ is cubulable.

The two decompositions can be stated together as: “Γ splits over xcy.”

4 The bootstrap

The following proposition is due to Sela (see Proposition 5.1 for a proof).
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Proposition 4.1 (cf. [Sel97, Cor. 1.10]). Assume G is a torsion-free hyperbolic
group and some extension G ¸ϕ Z does not contain a copy of Z2. If G is freely
indecomposable, then it is the fundamental group of a closed surface.

We may now prove the central result of this note:

Theorem 4.2. Let G be a torsion-free hyperbolic group. If G ¸ϕ Z is hyperbolic,
then it is cubulable.

Proof. We proceed by induction on the Kurosh–Grushko rank.
If the Kurosh–Grushko rank of G is 1, then G is freely indecompos-

able. By Proposition 4.1, G is a closed surface group and, by the clas-
sification of its automorphisms, ϕ is pseudo-Anosov [Thu82, Thm. 5.5].
Then G ¸ϕ Z is famously the fundamental group of a closed hyperbolic
3-manifold [Thu82, Thm. 5.6] and cubulable, as already mentioned in Sec-
tion 1. Assume n ě 2 and the theorem holds for torsion-free hyperbolic
groups of Kurosh–Grushko rank ă n.

Let the Kurosh–Grushko rank of G be n. Lemma 2.1 provides a max-
imal ϕ-periodic proper free factor system B = (B1, . . . , Bℓ), and each Bi
has Kurosh–Grushko rank ă n. As each peripheral free factor Bi is qua-
siconvex in the hyperbolic group G, a closest point projection G Ñ Bi is
Lipschitz and extends (cosetwise) to a peripheral retraction G ¸ϕ Z Ñ Bi ¸ Z

to the peripheral suspension. Since ϕ is a quasi-isometry, the peripheral re-
tractions are Lipschitz by the Morse lemma (in G) — a variation of this idea
appears in [Mit98, Sec. 3]. Thus the peripheral suspensions are quasicon-
vex and hyperbolic. By the induction hypothesis, each Bi ¸ Z is cubulable.

We distinguish two cases. The first case is when the Kurosh co-rank of
B is at least 3. Some positive power ψ of ϕ preserves B and, by Lemma 3.1,
ψ P Aut (G,B) is relatively fully irreducible. Since G ¸ψ Z is hyperbolic, it
has no Z2-subgroups and there are no ψ-periodic conjugacy classes of non-
trivial elements in G. In particular, ψ P Aut (G,B) is relatively atoroidal.
By Theorem 3.2, G ¸ψ Z acts cocompactly on a CAT(0) cube complex,
where each cell stabiliser is either trivial or conjugate to a finite index sub-
group of some quasiconvex cubulable Bi ¸ Z. Groves and Manning’s The-
orem 3.4 thus implies G ¸ψ Z is cubulable. It naturally embeds in G ¸ϕ Z

with finite index, so the latter is also cubulable by [Wis21, Lem. 7.14].
The last case is when the Kurosh co-rank of B is 2. There are three

possibilities: G is B1 ˚ B2, B1 ˚ F1, or F2. We rule out the third possibility
as F2 ¸ Z is never hyperbolic — it is a classical theorem of Nielsen that
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any automorphism of F2 maps the commutator of a basis to a conjugate of
itself or its inverse [Nie17]. To conclude, we will prove that Γ = G ¸ϕ xty
(virtually) satisfies the hypotheses of Hsu and Wise’s Theorem 3.5, and
hence is cubulable. Note that xty is a maximal cyclic subgroup of Γ, and
hence malnormal. It remains to show that Γ splits over xty as needed.

In the first possibility, up to taking the square of ϕ, we may assume that
ϕ preserves the conjugacy classes of both B1 and B2. After conjugation
(which does not change the mapping torus), we may assume it fixes B1
(setwise) and, being an automorphism, it sends B2 to a conjugate by an
element of B1. After further conjugation, it fixes both B1 and B2. Then the
mapping torus Γ = (B1 ˚ B2) ¸ϕ xty – (B1 ¸ xty) ˚xty (B2 ¸ xty).

In the second possibility, we write G = B1 ˚ xsy. Up to taking the square
of ϕ and composing with a conjugation, we may assume that ϕ(B1) = B1
and ϕ(s) = sb for some b P B1. Consider G ¸ϕ xty, where one has the
relation tst´1 = sb, or written differently s´1ts = bt. Then, rewriting the
presentation, one has that

Γ = (B1 ˚ xsy) ¸ϕ xty – (B1 ¸ xty)˚xtys=xbty,

where the last operation is an HNN extension with a stable letter s that
(right) conjugates xty to xbty (and actually t to bt).

5 Once more, with torsion

Now G is a finitely presented group (possibly with torsion). It has a max-
imal decomposition as the fundamental group of a finite graph of groups
with finite edge groups [Dun85]. The infinite vertex groups are thus one-
ended [Sta71]. We call this a Dunwoody–Stallings decomposition. It is not
unique, but the conjugacy classes of infinite vertex groups are uniquely
defined: they are conjugacy classes of the maximal one-ended subgroups
of G. The following is a generalisation of Proposition 4.1:

Proposition 5.1. Assume G is a hyperbolic group (possibly with torsion) and
some extension G ¸ϕ Z does not contain a copy of Z2. Then every maximal one-
ended subgroup of G is virtually a closed surface group.

Proof. Let H be a maximal one-ended subgroup of G. Since there are only
finitely many conjugacy classes of such subgroups, ψ = (adg ˝ ϕk)|H is an
automorphism of H for some integer k ě 1 and element g P G.
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Similar to the discussion in Section 3, the suspension H ¸ψ Z naturally
embeds in G ¸ϕ Z. As H is one-ended, its JSJ decomposition is preserved
by ψ [Bow98, Thm. 0.1]. The lack of Z2 in G ¸ϕ Z imposes that the JSJ
is trivial but not a rigid vertex [BF95, Cor. 1.3]. It is therefore a vertex of
surface type. In particular, H is virtually a closed surface group (see, for
instance, [Mar07, Sec. 4]).

We are now ready to state the main observation of this section.

Proposition 5.2. If G is a hyperbolic group (possibly with torsion) and some
extension G ¸ϕ Z does not contain a copy of Z2, then G has a characteristic finite
index subgroup that is a free product of closed surface groups and free groups. In
particular, G is residually finite.

Proof. Let X be a Dunwoody–Stallings decomposition of G. We need no-
tations for the decomposition: the underlying finite graph is X; for each
vertex v in X, its vertex group is Xv; and for each edge e in X, its finite
edge group is Xe. For each vertex v, denote by Hv a normal finite index
subgroup of Xv that is either trivial or a closed surface group, as guaran-
teed by Proposition 5.1.

As the subgroups Hv are torsion-free, the surjections qv : Xv Ñ Xv/Hv
are injective on finite subgroups. Thus we define a graph of finite groups
Y with underlying graph X, vertex groups Xv/Hv, and edge groups Xe;
the surjections qv induce a surjection q : G Ñ π1(Y) with a torsion-free
kernel. The quotient π1(Y) is virtually free by Karrass, Pietrowski, and
Solitar’s characterisation [KPS73, Thm. 1].

Let J ď π1(Y) be a free finite index subgroup. Since J and the kernel
of q are torsion-free, the preimage q´1(J) ď G is a torsion-free finite index
subgroup. The intersection H of subgroups of G with index [G : q´1(J)] is
a characteristic torsion-free finite index subgroup. The decomposition X

of G induces a Grushko decomposition of H whose freely indecomposable
free factors are closed surface groups.

We may extend Brinkmann’s thesis [Bri00] to the case with torsion.

Corollary 5.3. Suppose G is a hyperbolic group. Then G ¸ϕ Z is hyperbolic if
and only if it does not contain a copy of Z2.

The forward implication is standard. Conversely, if G ¸ϕ Z does not
contain a copy of Z2, then the same holds for the finite index subgroup
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G0 ¸ϕ|G0
Z, where G0 is the torsion-free subgroup given by Proposition 5.2.

As G0 ¸ϕ|G0
Z is hyperbolic [Bri00], so is G ¸ϕ Z.

Corollary 5.4. If G and G ¸ϕ Z are hyperbolic groups, then G ¸ϕ Z is cubulable.

Again, consider the finite index subgroup G0 ¸ϕ|G0
Z of G ¸ϕ Z, where

G0 is given by Proposition 5.2. G0 ¸ϕ|G0
Z is cubulable by Theorem 4.2,

and hence, by [Wis21, Lem. 7.14], so is G ¸ϕ Z.
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