
Constructing stable images

Jean Pierre Mutanguha∗

January 9, 2022

Abstract

There is an algorithm for constructing a canonical representative for an injective
free group endomorphism. The main corollary to our algorithm is an affirmative an-
swer to Ventura’s question: yes, the stable image for a free group endomorphism can
be computed. This corollary also generalizes to all finite rank free groups a result
due to Ciobanu–Logan in rank 2. By work of Bogopolski–Maslakova, it implies that
the fixed point subgroup of a free group endomorphism can be computed. The fi-
nal corollary is that the hyperbolicity of an ascending HNN extension of a free group
can be algorithmically determined by looking solely at the dynamics of the defining
monodromy.

Introduction

Let φ : F → F be an endomorphism of a finitely generated free group. The stable image
of φ, denoted φ∞(F ), is the intersection of all the iterated images φi(F ) for i ≥ 1. This
image has rank bounded above by the rank of F . In fact, Turner [Tur96] showed that it is
a retract of F and, if φ is injective, a free factor of F . By the Hopfian property of finitely
generated free groups, the restriction of φ to the stable image is an automorphism. Conse-
quently, the stable image can be used to reduce questions about a free group endomorphism
to questions about a free group automorphism. This is how Imrich–Turner [IT89] extended
Bestvina–Handel’s proof [BH92] of Scott’s conjecture to free group endomorphisms. Scott’s
conjecture — now Bestvina–Handel’s theorem — states that if φ is an automorphism, then
the fixed point subgroup Fix(φ) = {x ∈ F : φ(x) = x} has rank bounded above by the
rank of F .

On the computational side, Bogopolski–Maslakova gave an algorithm that computes a
basis for Fix(φ) when φ is an automorphism [BM16]; later, Feighn–Handel gave another
algorithm [FH18, Proposition 9.10]. In the general case where φ is just an endomorphism,
being able to algorithmically compute a basis for φ∞(F ) would combine with either of
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these algorithms to give one that computes a basis for Fix(φ). Ciobanu–Logan recently
gave an algorithm that computes bases for Fix(φ) and φ∞(F ) for any endomorphism φ of
a rank 2 free group [CL22]; however, the higher rank cases remained open.

In previous work [Mut21], we studied the dynamics of injective free group outer endo-
morphisms. We proved that an injective outer endomorphism [φ] has a canonical represen-
tative f : (Γ,G)→ (Γ,G) on a free splitting (Γ,G) of F with the following useful properties:

• the f -periodic vertex groups in G correspond to a [φ]-fixed free factor system of F .

• f lifts to a φ-equivariant expanding immersion on the Bass–Serre tree for (Γ,G).

It follows immediately that the fixed system from the first property is the unique maximal
[φ]-fixed free factor system. Free splittings will be defined in the next section but the term
used will be simply graphs, short for graphs of roses. Canonical representatives will also
be referred to as automorphic expansions where automorphic means the first property and
expansion means the second. When [φ] is an outer automorphism, then the (Γ,G) is the
trivial free splitting consisting of a singleton labelled by F . So these representatives are
only interesting when [φ] is not an outer automorphism.

We originally needed such a representative to prove a hyperbolization theorem for the
mapping torus of φ, also known as an ascending HNN extension of F . However, the exis-
tence proof was not algorithmic since such considerations were irrelevant to hyperbolization.
The main result of the present paper is giving an effective proof for this existence theorem:

Theorem (Constructing canonical representatives). There is an algorithm that takes an
injective free group endomorphism as input and outputs its canonical representative.

Let us, for a brief moment, discuss what made the previous proof nonconstructive.
That proof consisted of two main steps: first, we proved the existence of a unique maximal
fixed free factor system; then we used the uniqueness and maximality of the system to
construct the canonical representative. Compartmentalizing the proof like this made the
proof conceptually easier to follow. But here is the (algorithmic) issue: the way to certify
that we have the maximal fixed free factor system is by exhibiting the canonical represen-
tative; but we cannot construct the representative using this proof without first being sure
we have the right system. This becomes a chicken-and-egg problem!

The way around it is to construct the maximal fixed free factor system and canonical
representative simultaneously: construct a fixed free factor system, use it to construct a
piece of the canonical representative, use this partial representative to extend the fixed
free factor system, use the larger fixed free factor system to extend the partial represen-
tative. . . The back-and-forth ends when we have the complete representative. The cost to
this approach is the proof might be conceptually harder to follow. This summary does not
even address how to construct a fixed free factor system in the first place. We will sketch
the effective proof a little more carefully at the end of this introduction.
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On the other hand, the effective proof is actually more elementary as it makes no use
of Bestvina–Handel’s train track theory, only Stallings folds and bounded cancellation. A
second somewhat subtle improvement is that we construct a representive for the endomor-
phism φ, rather than the outer endomorphism [φ]: the free splitting (Γ,G) has a basepoint
fixed by the representative f . By forgetting the basepoint and restricting f to the core
of (Γ,G), we would get the canonical representative for [φ]. We do not prove uniqueness
of this representative for φ as it is irrelevant to our applications; however, the proof is
essentially the same as that for [φ] in [Mut21, Proposition 4.6].

Returning to the question of computing stable images and assuming φ is injective.
Let f : (Γ,G) → (Γ,G) be the canonical representative for φ. It follows from the defi-
nitions that the vertex group labelling the basepoint of (Γ,G) corresponds to the stable
image φ∞(F ). In particular, our effective proof immediately gives us a way to compute
stable images of injective free group endomorphisms. It is a consequence of the Hopfian
property that this gives us a way to compute stable images of free group endomorphisms.
Applying Bogopolski–Maslakova’s algorithm to stable images allows us to compute fixed
point subgroups as well; this answers an old open question, see [Ven10, Problem 1].

Corollary (Constructing stable images). There is an algorithm that takes a free group
endomorphism as input and outputs a basis for its stable image.

Corollary (Constructing fixed point subgroups). There is an algorithm that takes a free
group endomorphism as input and outputs a basis for its fixed point subgroup.

The last corollary of our effective proof is that the hyperbolicity of φ’s mapping torus
can be determined by studying only φ’s dynamics.

Corollary (Detecting hyperbolicity). There is an algorithm that takes an injective free
group endomorphism as input and (correctly) determines whether its mapping torus is
word-hyperbolic.

In fact, the last corollary applies more generally to HNN extensions of free groups over
free factors. We will now end the introduction with the careful sketch as promised.

Sketch of effective proof. Assume φ is not surjective and proceed by induction on
the complexity of F . We use nonsurjectivity and bounded cancellation to find a [φ]-
invariant proper free factor system G1, a free splitting (Γ1,G1), and a relative immersion
f1 : (Γ1,G1) → (Γ1,G1), i.e. a representative that lifts to a φ-equivariant immersion on
the Bass–Serre tree (Theorem 3.1, descend). Since G1 is a proper free factor system, the
restriction of φ to G1 has a canonical representative f2 : (Γ2,G2) → (Γ2,G2) by the induc-
tion hypothesis. Blow-up the vertices of (Γ1,G1) by replacing them with the corresponding
components of (Γ2,G2). This gives us a free splitting (Γ′,G2) with (Γ2,G2) as a subgraph
and a representative f ′ : (Γ′,G2)→ (Γ′,G2) whose restriction to (Γ2,G2) is f2 and such that
collapsing (Γ2,G2) recovers f1.
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Using the fact that f2 is a canonical representative and f1 a relative immersion, we
replace (Γ′,G2) with another free splitting that has the same vertex groups and assume f ′

is a relative immersion whose periodic vertex groups in G2 correspond to a proper [φ]-fixed
free factor system (Theorem 3.3, ascend). If it is expanding, then set (Γ,G) = (Γ′,G2)
and f = f ′. If it is not expanding, nonsurjectivity of φ implies the nonexpanding part
corresponds to a proper [φ]-invariant free factor system G that contains G2. Collapsing the
nonexpanding part will produce a free splitting (Γ,G) and expanding relative immersion
f : (Γ,G)→ (Γ,G) whose periodic vertex groups in G correspond to a larger proper [φ]-fixed
free factor system (Proposition 3.2, extend). Either way, it follows that f is the canonical
representative for φ and we are done.

Remark. The sketch is still not entirely correct as we swept some technicalities under
the rug. The representative f1 need not be an immersion — it could also be eventually
degenerate! For example, this could happen if the image of φ is contained in a proper free
factor. Furthermore, as the induction step involves passing to proper free factor systems,
the whole proof should be done with disconnected free splittings in mind. Thus it is a bit
tricky to define the appropriate notion of injectivity and nonsurjectivity in this generality.

Acknowledgments: I would like to thank Alan Logan and the MAXIMALS seminar
for pushing me to make my previous existence theorem algorithmic. Logan’s comments
helped improve the clarity in the paper. I am also grateful to the Max Planck Institute for
Mathematics for hosting and supporting me.
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Preparation

A (connected resp.) topological graph (Γ, ?) is a finite (connected resp.) 1-dimensional
CW-complex Γ along with a distinguished vertex (0-cell) for each connected component
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of Γ; the distinguished vertices ? ⊂ Γ(0) are its basepoints; topological graphs are allowed
to be degenerate, i.e. a finite set of points. A rose is a connected graph with exactly
one vertex. All topological graphs will have basepoints even though we will suppress the
basepoints from the notation. Each edge (1-cell) consists of two half-edges (or ends) and
the topological tangent space TvΓ at a vertex v ∈ Γ(0) is finite set of points indexed by the
union of v with the half-edges attached to v. We will abuse notation and refer to a point
of TvΓ by either v if it is indexed by the vertex v or ε if it is indexed by the half-edge ε.
Nondegenerate edge-paths in Γ are assumed to be oriented and hence have initial and
terminal half-edges. For a connected topological graph Γ, the fundamental group π1(Γ) is
the set of degenerate or reduced (i.e. topologically immersed) based loops with a binary
operation given by concatenation and tightening/reduction: (σ1, σ2) 7→ [σ1σ2]; and inverses
are given by reversals of orientation: σ 7→ σ.

A cellular map f : Γ → Γ′ is a continuous function of topological graphs that sends
vertices to vertices and edges to possibly degenerate edge-paths; cellular maps induce
topological derivatives dfv : TvΓ → Tf(v)Γ

′. For a cellular map f : Γ → Γ′, let K be the
maximum of the combinatorial length of the edge-path f(e) as e varies over all the edges
of Γ. Then f is K-Lipschitz, a fact that will be used throughout the paper. Generally,
K(f) will denote a convenient Lipschitz constant for f rather than the infimum. Simplicial
maps are the 1-Lipschitz cellular maps. A cellular map is based if it preserves basepoints.

Remark. We are treating Γ topologically to keep the exposition short; all topological no-
tions used in the paper without definition (e.g. immersion, deformation retraction, ho-
motopy equivalence, etc.) have combinatorial counterparts. For completeness, Stallings’
paper [Sta83] shows how to work with Γ combinatorially. See also Serre’s book [Ser77] and
Kapovich–Weidmann–Miasnikov’s paper [KWM05] for a purely combinatorial approach to
graph of groups.

p2

p1

p3

p4

p5

Γ : G :

Γ×

Γ•

Figure 1: A graph of rank 5; × marks the basepoint.

Graphs and subgraphs

A graph (of roses) (Γ,G, g) is a triple of two topological graphs and a π0-bijective map

g : G → Γ(0) that labels each vertex v ∈ Γ(0) with a component Γv = g−1(v) ⊂ G that
is a rose; the topological graph Γ is the underlying space, the components of G are the
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vertex roses, and the map g will now be suppressed from the notation (See Fig. 1). A
degenerate graph is a graph whose underlying space is degenerate. A vertex of (Γ,G) is a

vertex of Γ; a component of (Γ,G) is a pair (G, g−1(G(0))) whereG is a connected component
of Γ. A forest is a graph whose components (trees) have contractible underlying spaces and
at most one nondegenerate vertex rose. The tangent space at v is Tv(Γ,G) = TvΓ×π1(Γv)
and its elements are known as the tangent vectors at v; a tangent vector at v is trivial if
its first coordinate is v. A vertex of a graph is bivalent (univalent resp.) if it has exactly
two (one resp.) nontrivial tangent vectors; branch points are vertices with at least three
nontrivial tangent vectors and natural edges of (Γ,G) are maximal edge-paths in Γ whose
interior vertices are not branch points nor basepoints in (Γ,G). A tight graph is a graph
with no univalent vertices except possibly at basepoints.

A subgraph of the graph (Γ,G) is a pair (Γ′, g−1(Γ′)) where Γ′ ⊂ Γ is a subcomplex;
the subgraph is proper if Γ′ 6= Γ. The first examples of subgraphs we have seen are
components. The core of a graph core(Γ,G) is a subgraph whose underlying space Γ′ is
a minimal deformation retract of Γ relative to the vertices with nondegenerate vertex
roses; the core is unique unless (Γ,G) is a forest with degenerate vertex roses. Closely
related to the core, the tightening of a graph tight(Γ,G) is the subgraph whose underlying
space Γ′ is a minimal deformation retract of Γ relative to the basepoints and vertices with
nondegenerate vertex roses. Unlike components and tightenings, core subgraphs need not
contain basepoints of the ambient graph and will always be considered without basepoints.
For example, a natural edge of a core subgraph can be a concatenation of two natural
edges of the original graph if a basepoint is bivalent. All branch points of a tight graph are
contained in the graph’s core. A branch point of a tight graph is exceptional if it is not a
branch point of the core. A natural edge of a tight graph is inner if it is contained in the
graph’s core. Each component of a tight graph has at most one exceptional branch point.

p2

p1

p3

p4

p5

top(Γ,G) :

p2

p1

p3

p4

p5

Γ :

G :

Γ× Γ•

Figure 2: The blow-up of a graph.
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Blow-ups and collapses

The next couple of paragraphs introduce some standard operations that can be applied
to graphs. The blow-up top(Γ,G) of a graph (Γ,G) is the topological graph formed by
identifying each vertex v ∈ Γ with the basepoint of the vertex rose Γv — the basepoints of
top(Γ,G) are the images of the basepoints of Γ. Note that G is a subcomplex of top(Γ,G)
that contains all its vertices (See Fig. 2). Conversely, for any topological graph Γ, define
graph(Γ) to be the graph formed by labelling every vertex of Γ with a singleton. Subdivision
of a graph is a graph obtained by subdividing the underlying space and extending the
vertex roses with singletons that cover the new vertices. This operation can be reversed
by forgetting bivalent vertices.

p2

p1

p3

p4

p5

Γ :

G :

Γ× Γ•

p1
p2

p3p4

p5

Γ′′ :

G′′ :

Figure 3: The collapse of a graph with (Γ′,G′) = (Γ,G).

Let (Γ′,G′) be a subgraph of (Γ,G) and T ′ ⊂ Γ′ be a maximal subcomplex with con-
tractible components (topological forest) — each component of Γ′ contains exactly one
component of T ′. Since G′ consists of roses, T ′ is identified with a maximal topological
forest in top(Γ′,G′). The collapse of (Γ′,G′, T ′) in (Γ,G):

1. replace Γ′ with the union Γ′ ∪ Γ(0) and set G′ = G;

2. let Γ′′ = Γ/Γ′ be the quotient space of Γ where each component of Γ′ is collapsed to
a vertex, i.e. Γ′′(0) = π0(Γ′), Γ′′(1) \ Γ′′(0) = Γ \ Γ′, and the basepoints of Γ′′ are the
components of Γ′ that contain the basepoints of Γ;

3. define G′′ = top(Γ′,G′)/T ′ similarly and for any component v′′ of Γ′, let V ′′ be the
corresponding component in top(Γ′,G′)/T ′ — the components of G′′ are roses;

4. the collapse is the graph (Γ′′,G′′) with g′′ : G′′ → Γ′′(0) defined by g′′(V ′′) = v′′; by con-
struction, there is a T ′-induced based homotopy equivalence top(Γ,G)→ top(Γ′′,G′′).

Up to graph isomorphism (defined later), the collapse does not depend on the topo-
logical forest T ′ but, for our purposes, the T ′-induced based homotopy equivalence does;
nevertheless, we will usually suppress T ′ and simply say “collapse (Γ′,G′).” Under certain
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circumstances (e.g. Γ′ is a topological forest), the maximal topological forest T ′ ⊂ Γ′ is
unique and the induced based homotopy equivalence is canonical. Finally, (Γ′,G′) = (Γ,G)
if and only if the collapsed subgraph is a degenerate graph. Also note that collapsing the
subgraph graph(G) in graph(top(Γ,G)) recovers the graph (Γ,G). In Fig. 3, the subgraph
is the whole graph and so the collapse is degenerate.

Converse to the collapse construction, suppose γ : G → top(Γ′,G′) is a based homotopy
equivalence for some graph (Γ′,G′), then we can consider a labelling of each vertex v ∈ Γ(0)

by the component C ′v ⊂ Γ′ whose blow-up contains the image γ(Γv); in turn, we can use
these labels to define a blow-up topγ(Γ,Γ′) of the underlying space Γ. The partial blow-up
of (Γ,G) relative to γ is the graph relγ(Γ,G) = (topγ(Γ,Γ′),G′) where each vertex v′ ∈
topγ(Γ,Γ′)(0) is a vertex of Γ′ labelled by Γ′v′ ⊂ G′. By construction, (Γ′,G′) is a subgraph
of the relative blow-up relγ(Γ,G) (See Fig. 4), γ can be extended to based homotopy
equivalence γ : top(Γ,G) → top(relγ(Γ,G)), and collapsing (Γ′,G′) in relγ(Γ,G) recovers
the graph (Γ,G) up to a graph isomorphism (defined shortly).

p2

p1

p3

p4

p5

Γ :

G :

Γ× Γ•

Γ′ :

G′ :

p2

p1

p3

p4
relγ(Γ,G) :

p2

p1

p3

p4

Figure 4: A partial blow-up of a graph.

Graph maps and immersions

A graph map (f,Ψ): (Γ,G)→ (Γ′,G′) is the following data:

1. cellular maps f : Γ→ Γ′ and Ψ: G → G′ satisfying g′ ◦Ψ = f ◦ g; and

2. for each (oriented) edge e of Γ, a sequence of based loops ρ(e)i ∈ π1(Γ′vi), where
(vi)i≥0 is the sequence of vertices along the edge-path f(e).

Unless otherwise stated, graph maps will be based, i.e. the cellular map f is based.
An edge e of Γ is pretrivial if f(e) ∈ Γ′(0); the graph map is degenerate if f(Γ) ⊂ Γ′(0),

or equivalently, f(Γ) is contained in the basepoints of Γ′, and it is eventually degenerate

if fk(Γ) ⊂ Γ′(0) for some k ≥ 1. A graph map (f,Ψ) is K-Lipschitz (simplicial resp.) if f
is K-Lipschitz (simplicial resp.). We shall occasionally consider unbased graph maps by
looking at restrictions of graph maps to subgraphs that have no basepoints.

8



Graph maps (f,Ψ) induce based cellular maps top(f,Ψ): top(Γ,G)→top(Γ′,G′). Con-
versely, based cellular maps f induce graph maps graph(f) : graph(Γ)→graph(Γ′). A graph
map (f,Ψ) is π1-nonsurjective if top(f,Ψ) is π1-nonsurjective, i.e. some based loop in
top(Γ,G) is not homotopic rel. basepoints to the top(f,Ψ)-image of a based loop. A
homotopy equivalence is a graph map (f,Ψ) whose blow-up top(f,Ψ) is a based homotopy
equivalence. A graph isomorphism is a homotopy equivalence (f,Ψ) whose underlying map
f is a simplicial homeomorphism. On the other hand, we will abuse terminology a bit and
say (f,Ψ) is π1-injective if the restriction of top(f,Ψ) to each component is π1-injective,
i.e. no based loop in top(Γ,G) is homotopic rel. basepoints to the top(f,Ψ)-image of two
distinct reduced based loops in the same component of top(Γ,G).

The tightening of a graph has an induced homotopy equivalence whose blow-up is a
deformation retraction. The collapse of a subgraph (Γ′,G′) in (Γ,G) has a T ′-induced
homotopy equivalence (Γ,G) → (Γ′′,G′′). Conversely, let γ : graph(G) → (Γ′,G′) be a
homotopy equivalence and relγ(Γ,G) be the partial blow-up of (Γ,G) relative to top(γ).
Then (Γ′,G′) is a subgraph of relγ(Γ,G) by construction and there is an induced homotopy
equivalence γ : graph(top(Γ,G)) → relγ(Γ,G) that extends γ; recall that graph(G) and
(Γ′,G′) are subgraphs of graph(top(Γ,G)) and relγ(Γ,G) respectively.

For any graph map (f,Ψ): (Γ,G)→ (Γ′,G′), there is an induced derivative at v ∈ Γ(0),
d(f,Ψ)v : Tv(Γ,G)→ Tf(v)(Γ

′,G′), given by (ε, σv) 7→ (dfv(ε), [Ψ(σv)ρ(ε)]), where

• ρ(ε) is trivial when ε = v, and

• ρ(ε) = ρ(e)0 when ε is the initial half-edge of the oriented edge e.

A graph map (f,Ψ) of tight graphs is natural if top(f,Ψ) maps natural edges to degenerate
or reduced edge-paths and (f,Ψ) maps branch points to branch points with possibly one
exception: an exceptional branch point of (Γ,G) can be mapped to a bivalent basepoint
of (Γ′,G′). Note that if a natural graph map (f,Ψ) does not map any bivalent basepoint
to a univalent basepoint, then it will map cores to cores and the restriction to the cores,
denoted core(f,Ψ), is an unbased graph map.

An immersion is a graph map (f,Ψ) with no pretrivial edges and whose derivative
maps d(f,Ψ)v are injective for all v ∈ Γ(0). Immersions of tight graphs are π1-injective
natural graph maps; π1-injective graph maps defined on degenerate graphs are vacuously
immersions. Although tangent spaces are infinite at vertices with nondegenerate vertex
roses, it is a finite check to test injectivity of the derivative maps: if ε1 6= ε2 but dfv(ε1) =
dfv(ε1), then test whether [ρ(ε1)ρ(ε2)−1] ∈ Ψ∗(π1(Γv)), i.e. ρ(ε1)ρ(ε2)−1 is homotopic rel.
basepoints to the Ψ-image of a based loop in Γv.

Automorphic expansions

Now consider a graph map (f,Ψ): (Γ,G) → (Γ,G) from a graph to itself. A subgraph of
(Γ,G) is (f,Ψ)-invariant if the underlying subcomplex is f -invariant. The stable subgraph
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for (f,Ψ) is the invariant subgraph that consists of f -periodic vertices and edges. An
expansion is an immersion whose stable subgraph is degenerate. A graph map (f,Ψ) is
automorphic if Ψ restricts to a based homotopy equivalence of the Ψ-periodic components of
G. Note that an automorphic graph map restricts to an unbased graph isomorphism on its
stable subgraph. The graph map (f,Ψ) permutes basepoints if f is π0-bijective. The main
result of the paper is an algorithm constructing an automorphic expansion homotopic to a
π1-injective graph map that permutes basepoints. Fig. 5 is an illustration of an automorphic
expansion.

(f,Ψ) :

p2

p1

p3

p4

p3

p2

p1

p1

p2

p4
p4

p2

p3

Figure 5: An automorphic expansion on a graph of rank 5. The graph is on the left and the
expansion is on the right. Note that the map’s image is contained in a proper subgraph.

We will say graph maps (f1,Ψ1) and (f2,Ψ2) are homotopic via a homotopy equiva-
lence α : (Γ1,G1) → (Γ2,G2) if top((f2,Ψ2) ◦ α) and top(α ◦ (f1,Ψ1)) are homotopic rel.
basepoints. Collapsing an (f,Ψ)-invariant subgraph induces a graph map (f ′′,Ψ′′) that is
homotopic to (f,Ψ) via the T ′-induced homotopy equivalence. Although we omit the de-
tails, we note that the derivative maps of the induced graph map (f ′′,Ψ′′) also depends on
the choice of marked point for each component of the collapsed subgraph. Conversely, let
γ : graph(G)→ (Γ′,G′) be a homotopy equivalence and suppose (f ′,Ψ′) : (Γ′,G′)→ (Γ′,G′)
and graph(Ψ) are homotopic via γ. The partial blow-up of (Γ,G) relative to top(γ) induces
a graph map relγ(f,Ψ) with invariant subgraph (Γ′,G′) and the induced graph map is nat-
ural if (f,Ψ) and (f ′,Ψ′) are natural. The restriction of relγ(f,Ψ) to (Γ′,G′) is (f ′,Ψ′)
and relγ(f,Ψ) is homotopic to graph(top(f,Ψ)) via the homotopy equivalence γ that ex-
tends γ. Furthermore, relγ(f,Ψ) induces the graph map (f,Ψ) up to a graph isomorphism
after collapsing (Γ′,G′) in relγ(Γ,G).

Construction

1 Outline

The following algorithm is the main result. We start by outlining the steps in the algorithm
using three key steps (Theorems 3.1 and 3.3, Proposition 3.2) as black boxes.
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The algorithm for constructing automorphic expansions.

Input: A π1-injective cellular map ψ : G→ G of roses that permutes basepoints.
Output:

• a graph (∆,D), a homotopy equivalence α : graph(G)→ (∆,D), and

• an automorphic expansion p : (∆,D)→ (∆,D) homotopic to graph(ψ) via α.

The graph (∆,D) is degenerate if and only if ψ is a based homotopy equivalence.

Outline of the algorithm.
Start by checking if ψ is a based homotopy equivalence. If it is, then set

(∆,D) = (π0(G), G), α = π, p = (π0(ψ), ψ),

where π : graph(G)→ (∆,D) is the evident collapse map and we are done.

Otherwise, ψ is not a based homotopy equivalence. Start with G0 = G and ψ0 = ψ,
then enter the descent loop:

1. Given a π1-injective cellular map ψm : Gm → Gm of roses that permutes basepoints
but is not a based homotopy equivalence,

2. use the descending algorithm in Theorem 3.1 with ψm as input to construct:

• a tight graph (Γm+1,Gm+1) with a nondegenerate core,

• a homotopy equivalence γm : graph(Gm)→ (Γm+1,Gm+1),

• a natural graph map (fm+1,Ψm+1) : (Γm+1,Gm+1) → (Γm+1,Gm+1) that is ho-
motopic to graph(ψm) via γm, and

• either (fm+1,Ψm+1) is an immersion or core(fm+1,Ψm+1) is eventually degen-
erate.

3. Save the data (fm+1,Ψm+1) and γm for later use.

4. Let Gm+1 be the Ψm+1-periodic components of Gm+1 and ψm+1 = Ψm+1|Gm+1
.

5. If ψm+1 is a based homotopy equivalence, exit the loop.

6. Otherwise, restart the loop with ψm+1.

As each (Γm,Gm) has a nondegenerate core, the complexities of Gm are strictly decreasing
and the loop will stop after n iterations for some positive n ≤ 2 · rank(G0) − 1. For each
positive m ≤ n, descent produces:

• a tight graph (Γm,Gm) with a nondegenerate core,
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• a natural graph map (fm,Ψm) : (Γm,Gm)→ (Γm,Gm) that either is an immersion or
has an eventually degenerate core, and

• a homotopy equivalence γm−1 : graph(Gm−1) → (Γm,Gm) such that (fm,Ψm) is ho-
motopic to graph(ψm−1) via γm−1, where Gm−1 is the union of the Ψm−1-periodic
components of Gm−1 and ψm−1 = Ψm−1|Gm−1

(if m ≥ 2).

By design, descent stops the first moment it encounters a based homotopy equivalence.
Thus (fn,Ψn) is automorphic and each π1-injective graph map (fm,Ψm) permutes base-
points but is π1-nonsurjective for 1 ≤ m ≤ n. By Lemma 2.3, the graph map (fn,Ψn)
is an immersion. In summary, (fn,Ψn) is a π1-nonsurjective automorphic immersion that
permutes basepoints. This concludes the intermediate step of the algorithm.

The graphs, graph maps, and homotopy equivalences produced by the descent will be
accessible in the next loop. Start with m = n, (Ωn,On) = (Γn,Gn), qn = (fn,Ψn), and ωn
the collapse map graph(top(Γn,Gn))→ (Γn,Gn), then enter the ascent loop:

1. Given

• an index m (for accessing the sequences produced by descent),

• a nondegenerate graph (Ωm,Om),

• a homotopy equivalence ωm : graph(top(Γm,Gm))→ (Ωm,Om), and

• an automorphic immersion qm : (Ωm,Om) → (Ωm,Om) that is homotopic to
graph(top(fm,Ψm)) via ωm — in particular, qm permutes basepoints and is
π1-nonsurjective,

2. use the extending algorithm in Proposition 3.2 with qm as input to construct:

• a nondegenerate graph (∆m,Dm),

• a homotopy equivalence δm : (Ωm,Om)→ (∆m,Dm), and

• an automorphic expansion pm : (∆m,Dm)→ (∆m,Dm) that is homotopic to qm
via δm.

3. Set αm = δm ◦ ωm ◦ graph(top(γm−1)) : graph(Gm−1)→ (∆m,Dm).

Note that pm is homotopic to graph(ψm−1) via αm.

4. If m = 1, save the data pm and αm then exit the loop.

5. Otherwise, recall that either (fm−1,Ψm−1) is an immersion or core(fm−1,Ψm−1) is
eventually degenerate by the descent construction. Use the ascending algorithm in
Theorem 3.3 with pm, αm, and (fm−1,Ψm−1) as inputs to construct:

• a nondegenerate graph (Ωm−1,Om−1),
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• a homotopy equivalence ωm−1 : graph(top(Γm−1,Gm−1))→ (Ωm−1,Om−1),

• and an automorphic immersion qm−1 : (Ωm−1,Om−1) → (Ωm−1,Om−1) that is
homotopic to graph(top(fm−1,Ψm−1)) via ωm−1.

6. Restart the loop with m− 1, (Ωm−1,Om−1), ωm−1, and qm−1.

In the end, ascent produces the output for the algorithm:

• a nondegenerate graph (∆1,D1),

• a homotopy equivalence α1 : graph(G0)→ (∆1,D1), and

• an automorphic expansion p1 : (∆1,D1)→ (∆1,D1) homotopic to graph(ψ0) via α1.

This concludes the algorithm’s outline.

2 Stallings folds and bounded cancellation

The most important tool in our algorithm is Stallings factorization [Sta83]: Stallings
showed that any cellular map f : Γ → Γ′ can be algorithmically factored as f = ι ◦ γ
where ι is a simplicial immersion and γ is a π1-surjective cellular map — precisely, a com-
position of pretrivial edge collapses and Stallings folds. Furthermore, the maps ι and γ are
unique up to simplicial homeomorphism. The cellular map γ is a homotopy equivalence
if and only if f is π1-injective; if f is π1-injective, then the simplicial immersion ι is a
homeomorphism if and only if f is a homotopy equivalence. We now slightly adapt this to
work for graph maps.

Lemma 2.1. Any graph map (f,Ψ): (Γ,G) → (Γ′,G′) can be algorithmically factored as
(f,Ψ) = ι◦γ where ι : S(f,Ψ)→ (Γ′,G′) is a simplicial immersion and γ : (Γ,G)→ S(f,Ψ)
a π1-surjective graph map. Furthermore, the graph S(f,Ψ) and graph maps ι and γ are
unique up to graph isomorphism.

The graph map γ is a homotopy equivalence if and only if (f,Ψ) is π1-injective; if (f,Ψ)
is π1-injective, then the simplicial immersion ι is a graph isomorphism if and only if (f,Ψ)
is a homotopy equivalence.

The graph S(f,Ψ) will be known as the Stallings graph for (f,Ψ).

Proof. Apply Stallings theorem to factor top(f,Ψ) = ι′ ◦ γ′ where ι′ : S → top(Γ′,G′) is
a based simplicial immersion and γ′ : top(Γ,G) → S a π1-surjective based cellular map.
Define the subcomplex S ⊂ S to be the ι′-preimage of G′. Turning everything into graphs
gives graph(top(f,Ψ)) = graph(ι′) ◦ graph(γ′) where graph(ι′) is a simplicial immersion
and graph(γ′) a π1-surjective graph map.

By construction, graph(top(f,Ψ)) maps graph(G) to graph(G′). Then graph(γ′) maps
graph(G) to graph(S). Collapse graph(G) in graph(top(Γ,G)), graph(S) in graph(S), and
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graph(G′) in graph(top(Γ′,G′)). This recovers the graphs (Γ,G) and (Γ′,G′) and induces
a simplicial immersion ι : S(f,Ψ) → (Γ′,G′) (we omit the details here as well) and π1-
surjective graph map γ : (Γ,G) → S(f,Ψ), where the graph S(f,Ψ) is the collapse of
graph(S) in graph(S).

For uniqueness, suppose (f,Ψ) = ι′′ ◦ γ′′ where ι′′ : S′(f,Ψ) → (Γ′,G′) is a simplicial
immersion and γ′′ : (Γ,G) → S′(f,Ψ) a π1-surjective graph map. Then top(ι′′) = ι1 ◦ γ1

where ι1 : S′ → top(Γ′,G′) is a based simplicial immersion and γ1 : top(S′(f,Ψ)) → S′ a
π1-surjective based cellular map. By uniqueness of Stallings factorization, there is a based
simplicial homeomorphism h : S′ → S such that ι1 = ι′ ◦ h and γ′ = h ◦ γ1 ◦ top(γ′′).
Set S ′ ⊂ S′ to be the ι1-preimage of G′. Since ι′′ is an immersion, collapsing S ′ in S′

recovers S′(f,Ψ) up to a graph isomorphism. As ι1 = ι′ ◦ h and h is a based simplicial
homeomorphism, we get that h(S ′) = S. So collapsing S ′ in S′ and S in S induces a graph
isomorphism h̄ : S′(f,Ψ)→ S(f,Ψ) with ι′′ = ι ◦ h̄ and γ = h̄ ◦ γ′′.

For the most part, we will be interested in the case (Γ′,G′) = (Γ,G) and computing
the factorizations of iterates (f,Ψ)k. The next lemma is about based cellular maps, or
equivalently, graph maps on graphs with degenerate vertex spaces.

Lemma 2.2. Let f : Γ→ Γ be a π1-injective based cellular map that permutes basepoints.
If f is not a based homotopy equivalence, then the length of the longest inner natural edge
of tight(S(fk)) is unbounded as k →∞.

Proof. Suppose f : Γ→ Γ is π1-injective based cellular map that permutes basepoints and
the length of the longest inner natural edge of tight(S(fk)) was uniformly bounded for
all k ≥ 1. We want to show that f is a based homotopy equivalence. Let fk = ιk ◦ γk
be the Stallings factorization for k ≥ 1. Since f is π1-injective, γk is a based homotopy
equivalence, and, as f permutes basepoints, ιk is π0-bijective for k ≥ 1. The number of
inner natural edges of tight(S(fk)) is bounded above by 3 · rank(Γ) − 2. Thus there is a
uniform bound on the number of edges in core(S(fk)) for k ≥ 1. So the sequence core(ιk)
is eventually periodic, i.e. there are integers m > n ≥ 1 and a simplicial homeomorphism
h : core(S(fm))→ core(S(fn)) such that core(ιm) = core(ιn) ◦ h.

Find the factorizations γn◦fm−n = ι′◦γ′ and γ1◦fm−n−1 = ι′′◦γ′′. On the other hand,
fm = fn ◦ fm−n = ιn ◦ ι′ ◦ γ′, so uniqueness of factorization implies, up to based simplicial
homeomorphism, ιn ◦ ι′ = ιm and γ′ = γm. So core(ιn) ◦ core(ι′) = core(ιm). Recall that
core(ιm) = core(ιn) ◦ h where h is a simplicial homeomorphism. First observation: a π0-
bijective simplicial immersion from a graph to itself is a simplicial homeomorphism. Hence,
core(ι′) ◦ h−1 must be a simplicial homeomorphism. This implies core(ι′) is a simplicial
homeomorphism too. Second observation: a based simplicial immersion whose restriction
to the core is a homeomorphism is in fact a based simplicial embedding onto a deformation
retract. Therefore, ι′ is a based simplicial embedding onto a deformation retract.

Since γ′ = γm is a based homotopy equivalence, γn ◦fm−n = ι′ ◦γ′ is a based homotopy
equivalence. As γn is a based homotopy equivalence too, so is fm−n. Again by uniqueness
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of factorization, we may take ι1 ◦ ι′′ = ιm−n and γ′′ = γm−n up to based simplicial home-
omorphism. In particular, ι1 ◦ ι′′ is a based simplicial homeomorphism (since fm−n is a
based homotopy equivalence) and, consequently, so is ι1 (and ι′′). Therefore, f = ι1 ◦ γ1 is
a based homotopy equivalence as γ1 is a based homotopy equivalence.

We will now make an observation about graph maps that permute basepoints and
restrict to based homotopy equivalences on the periodic vertex roses.

Lemma 2.3. Suppose (Γ,G) has a nondegenerate core and (f,Ψ): (Γ,G) → (Γ,G) is an
automorphic graph map that permutes basepoints and preserves the core. If core(f,Ψ) is
eventually degenerate, then (f,Ψ) is not π1-injective.

Proof. Suppose core(f,Ψ)k is degenerate for some k ≥ 1. Since core(f,Ψ) permutes com-
ponents, each component of core(Γ,G) has exactly one periodic vertex and top(core(f,Ψ)k)
can be considered a cellular map top(core(Γ,G))→ G where G is the union of Ψ-periodic
vertex roses labelling vertices of core(Γ,G). Factor top(core(f,Ψ)k) = ι ◦ γ, then ι is a
simplicial homeomorphism since top(core(f,Ψ)k) restricts to a homotopy equivalence of G
by the automorphic assumption.

If top(core(f,Ψ)k) were π1-injective, then ι being a simplicial homeomorphism would
imply top(core(f,Ψ)k) were a homotopy equivalence. But as (Γ,G) has a nondegenerate
core, rank(G) < rank(top(Γ,G)) and so top(core(f,Ψ)k) is not π1-injective. Therefore,
core(f,Ψ) and (f,Ψ) are not π1-injective.

The next lemma, also known as the bounded cancellation lemma, will be used exten-
sively in this paper. For an edge-path p in a topological graph Γ, [p] denotes the reduced
edge-path that is homotopic to p rel. endpoints.

Lemma 2.4 (Bounded cancellation). Let g : (Γ,G)→ (Γ′,G′) be a π1-injective graph map.
Then there is a computable constant C such that, for any natural edge-path decomposition
p1 · p2 of a reduced path in top(Γ,G), the reduction (rel. endpoints) of the edge-path con-
catenation [top(g)(p1)][top(g)(p2)] to [top(g)(p1)top(g)(p2)] involves cancelling a subpath
with length ≤ C in [top(g)(p1)] and [top(g)(p2)].

The following proof is due to Bestvina-Feighn-Handel [BFH97, Lemma 3.1].

Proof. Factor top(g) = ι ◦ γ ◦ g0 into a pretrivial edge collapse and subdivision g0, a
composition of r ≥ 0 folds γ = gr ◦ · · · ◦ g1, and a based simplicial immersion ι. The
collapse, subdivision, and immersion have cancellation constants 0 while each fold has
cancellation constant 1 by π1-injectivity. Thus we may choose C = r.

Although the lemma gives a recipe for computing a cancellation constant, C(g) will
generally denote an a priori computed constant that may be different from that produced
by applying the recipe to g. The main idea is that some operations can increase the size of a
graph while keeping the cancellation constant unchanged. If done appropriately, this allows
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us to promote graph maps to immersions. Our first application of bounded cancellation
along these lines is a sufficient condition for a natural graph map to be an immersion.

Lemma 2.5. Suppose (f,Ψ): (Γ,G) → (Γ′,G′) is a π1-injective natural graph map with
cancellation constant C(f,Ψ). If (Γ,G) has no pretrivial edges and every natural edge of
(Γ′,G′) is longer than C(f,Ψ), then (f,Ψ) is an immersion.

Proof. For a contradiction, suppose d(f,Ψ)v is not injective at the branch point v ∈ Γ(0).
By assumption, (f,Ψ) has no pretrivial edges, so d(f,Ψ)v(ε1, σ1) = d(f,Ψ)v(ε2, σ2) = (ε, σ)
for some distinct nontrivial tangent vectors (ε1, σ1), (ε2, σ2) at v and (ε, σ) at f(v); let
ε1, ε2, ε be respective initial half-edges of oriented natural edges e1, e2, e.

Note that ē1 · [σ1σ2]e2 is a reduced natural edge-path decomposition in top(Γ,G), but

[top(f,Ψ)(ē1)][top(f,Ψ)(σ1σ2e2)] = uēρ(ε1) [Ψ(σ1σ2)ρ(ε2)] ew

for some reduced edge-paths u,w in top(Γ′,G′). The fact that [top(f,Ψ)(e1)] has initial
segment ρ(ε1)e follows from (f,Ψ) being natural. Same reasoning goes for the second piece
of the concatenation. By assumption, σ = Ψ(σ1)ρ(ε1) = Ψ(σ2)ρ(ε2), so the reduction of
the above edge-path concatenation will involve cancelling a subpath containing e. Yet we
assumed the natural edge e is longer than C(f,Ψ), a contradiction.

The next lemma bounds in terms of a cancellation constant how close π1-injective graph
maps are to being natural.

Lemma 2.6. Suppose (f,Ψ): (Γ,G)→ (Γ′,G′) is a π1-injective graph map of tight graphs
with cancellation constant C = C(f,Ψ). Then (f,Ψ) maps branch points to the C-
neighborhood of branch points with possibly one exception: some exceptional branch point
are mapped to the C-neighborhood of bivalent basepoints.

Proof. Set C = C(f,Ψ). If (Γ′,G′) is the C-neighborhood of its branch points, then there
is nothing to prove. Suppose ν is a vertex in Γ′ whose distance to the nearest branch point
is > C. We need to show that ν is not the f -image of any branch point of core(Γ,G).
Set ε1 to be an oriented half-edges originating from ν and let ε̄1 be the same half-edge with
opposite orientation. Since ν is not a branch point, its vertex rose is degenerate. As (f,Ψ)
is π1-injective, all vertices in the preimage f−1(ν) have degenerate vertex roses.

Suppose v is a branch point of core(Γ,G) and f(v) = ν. As v is a branch point with
a degenerate vertex rose, there are at least three distinct oriented half-edges in the core
originating from v: e1, e2, and e3. Let p12 be an oriented reduced edge-path in top(Γ,G)
that starts and ends with e1 and e2 respectively and define p23 similarly. Set p13 = [p12p23]
and p′13 = p12p23. These reduced paths exist because the three oriented half-edges are in
the core. See Figure 6 for an illustration. Although the paths are loops, we still treat them
as paths, i.e. tightening is done rel. the endpoints. Without loss of generality, assume
[top(f,Ψ)(p12)] starts with ε1.
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Figure 6: Schematic for paths p12, p23, p13, and p′13. The path p13 starts with e1 follows the
dashed path and ends with e3. The path p′13 is the “figure 8” path traced by p12 then p23.
The figure on the right assumes the point ν is in the core but this is not always the case.

If [top(f,Ψ)(p12)] ends with ε̄1, then [top(f,Ψ)(p12)] = µ1ρµ1 , where µ1 is an extension
of ε1 to an embedded path in top(Γ′,G′) from ν to a branch point and ρ is a reduced
nontrivial loop. By hypothesis, µ1 is longer than C. Since p12 starts and ends with e1 and
e2 respectively, the natural edge-path decomposition p12 ·p12 of the immersed path leads to
the concatenation of reduced paths [top(f,Ψ)(p12)][top(f,Ψ)(p12)] with µ1µ1 as a subpath,
violating bounded cancellation. So we may assume ν is bivalent and [top(f,Ψ)(p12)] starts
and ends with ε1 and ε̄2, where ε1, ε2 are the distinct oriented half-edges originating from ν.

If [top(f,Ψ)(p23)] starts and ends with ε2 and ε̄1, then [top(f,Ψ)(p13)], the reduction of
[top(f,Ψ)(p12)top(f,Ψ)(p23)], starts and ends with ε1 and ε̄1 respectively, which violates
bounded cancellation for the same reason given in the previous paragraph. Similarly, if
[top(f,Ψ)(p23)] starts and ends with ε1 and ε̄2, we rule out this possibility by considering
[top(f,Ψ)(p′13)]. We have ruled out all cases, and therefore, branch points of core(Γ,G) are
mapped to the C-neighborhood of branch points of (Γ′,G′).

For the exceptional case, let ν be a vertex in Γ′ whose distance to nearest branch point
or bivalent basepoint is > C. Suppose v is an exceptional branch point of (Γ,G) and
f(v) = ν. The argument is essentially the same as before. There is a unique oriented half-
edge e∗ not in the core originating from v and exactly two distinct oriented half-edges e1, e2

in the core originating from v. Let p12 be defined as before and p∗ be the oriented natural
edge in top(Γ,G) originating from v and ending at the basepoint ∗. By the argument above,
we may assume ν is bivalent and [top(f,Ψ)(p12)] starts and ends with ε1 and ε̄2. Without
loss of generality, the reduced path [top(f,Ψ)(p∗)] starts with ε1. So the natural edge-path
decomposition p∗ · p12 leads to a violation of the bounded cancellation lemma. Therefore,
an exceptional branch point (Γ,G) is mapped to the C-neighborhood of a branch point or
bivalent basepoint of (Γ′,G′).

Let q : (Γ,G)→ (Γ,G) be a π1-injective graph map. For k ≥ 1, factor qk = ιk ◦ γk into
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a simplicial immersion ιk : S(qk)→ (Γ,G) and a homotopy equivalence γk : (Γ,G)→ S(qk).
Set q1 = γ1 ◦ ι1 : S(q)→ S(q) then ι1 ◦ q1 = q ◦ ι1 and q1 ◦ γ1 = γ1 ◦ q. Inductively assume
the π1-injective graph map qk : S(qk)→ S(qk) satisfies ιk ◦ qk = q ◦ ιk and qk ◦ γk = γk ◦ q.
Factor qk = ι′ ◦ γ′ into a simplicial immersion ι′ : S′ → S(qk) and a homotopy equivalence
γ′ : S(qk)→ S′. We now observe that:

ιk ◦ ι′ ◦ γ′ ◦ γk = ιk ◦ qk ◦ γk
= q ◦ ιk ◦ γk = qk+1.

By uniqueness of factorization, up to graph isomorphism, we may assume S′ = S(qk+1),
γ′ ◦ γk = γk+1, and ιk ◦ ι′ = ιk+1. Set qk+1 = γ′ ◦ ι′ : S(qk+1)→ S(qk+1). By construction,
ιk+1 ◦ qk+1 = ιk ◦ ι′ ◦ γ′ ◦ ι′ = q ◦ ιk+1 and qk+1 ◦ γk+1 = γ′ ◦ ι′ ◦ γ′ ◦ γk = γk+1 ◦ q.

The first relation ιk ◦ qk = q ◦ ιk and the fact ιk is a simplicial immersion implies qk and
q have the same Lipschitz and cancellation constants, i.e. K(qk) = K(q) and C(qk) = C(q)
for all k ≥ 1. We apply a deformation retraction to the image of qk to get a homotopic graph
map q′k that preserves tightenings. This does not change the Lipschitz and cancellation
constants. Set S̄k = tight(S(qk)) and let tight(q′k) : S̄k → S̄k is the restriction of q′k to the
tightenings.

By Lemma 2.6, tight(qk) maps branch points to C(q)-neighborhoods of branch points
except possibly some exceptional branch points are mapped to C(q)-neighborhoods of
bivalent basepoints. We can apply a bivalent homotopy to get a graph map q̄′k : S̄k → S̄k
that maps branch points to branch points except possibly some exceptional branch points
to bivalent basepoints.

Let K(q) be the Lipschitz constant for q. By the bound on the necessary homotopy,
we can use K(q̄′k) = K(q) + C(q) and C(q̄′k) = 2C(q) as the Lipschitz and cancellation
constants for q̄′k. We can then apply a tightening homotopy to ensure top(q̄′k) maps natural
edges to reduced edge-paths. This homotopy will not worsen the Lipschitz and cancellation
constants and the final graph map q̄k is natural. Finally, let γ̄k : (Γ,G) → S̄k be the
homotopy equivalence induced by the three homotopies. The second relation qk◦γk = γk◦q
implies q̄k and q are homotopic via γ̄k. To summarize the preceding discussion:

Proposition 2.7. Suppose q : (Γ,G)→ (Γ,G) is a π1-injective graph map. For any k ≥ 1,
there is an algorithm that finds a tight graph S̄k, a homotopy equivalence γ̄k : (Γ,G)→ S̄k,
and natural graph map q̄k : S̄k → S̄k such that:

1. S̄k = tight(S(qk)) is the tightening for the Stallings graph for qk,

2. q̄k is homotopic to q via γ̄k, and

3. K(q̄k) = K(q) + C(q) and C(q̄k) = 2C(q).

The crucial point is that the Lipschitz and cancellation constants are independent of k.
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3 Key steps

We now give the statements and proofs of the key steps in the outline.

Theorem 3.1 (Descend). Let ψ : G→ G be a π1-injective based cellular map that permutes
basepoints and is not a based homotopy equivalence.

There is an algorithm that takes ψ as input and constructs a tight graph (Γ,G) with a
nondegenerate core, a homotopy equivalence γ : graph(G) → (Γ,G), and a natural graph
map (f,Ψ): (Γ,G)→ (Γ,G) such that:

1. (f,Ψ) is homotopic to graph(ψ) via γ;

2. either (f,Ψ) is an immersion or core(f,Ψ) is eventually degenerate.

Proof. Suppose ψ : G → G permutes basepoints, is tight, but is not a based homotopy
equivalence. Set N = 3 · rank(G)− 1, K = K(ψ) + C(ψ), C = 2C(ψ), and k = 1. Enter a
loop:

1. Given a positive integer k ≥ 1, construct S(ψk) the Stallings graph for graph(ψk).

2. If an inner natural edge of tight(S(ψk)) is longer than C ·KN−1, save k and exit the
loop. Otherwise, restart the loop with k + 1.

By hypothesis and Lemma 2.2, the lengths of inner natural edges of tight(S(ψn)) are
unbounded as n→∞ and so the loop must eventually stop. Use the algorithm in Proposi-
tion 2.7 with graph(ψ) and k as input to construct a homotopy equivalence γ̄k : graph(G)→
S̄k and a natural graph map f̄k : S̄k → S̄k homotopic to graph(ψ) via γ̄k, where S̄k =
tight(S(ψk)); the graph map f̄k has Lipschitz and cancellation constants K and C respec-
tively.

Form a directed graph Gk whose vertices are the natural edges of S̄k and there is a
directed edge Ei → Ej if f̄k(Ei) (in the underlying space) contains Ej . Since S̄k is a tight
graph with the same rank as G, Gk has at most N vertices. Let L0 be the natural edges of
S̄k longer than C ·KN−1 and L the union of L0 and natural edges on a directed path to L0

in Gk. Since f̄k is K-Lipschitz and the shortest directed path in Gk from a natural edge
in L to L0 has at most N natural edges on it, every natural edge in L is longer than C.
The natural edges in L will be long and the remaining ones will be short.

Set (∆′,D′) be the subgraph of S̄k consisting of all the short natural edges and vertices.
The subgraph is f̄k-invariant by construction of L. Collapsing (∆′,D′) in S̄k produces:

1. a tight graph (Γ,G) with natural edges longer C and a nondegenerate core,

2. a T ′-induced homotopy equivalence γ′k : S̄k → (Γ,G) for some maximal topological
forest T ′ ⊂ ∆′, and
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3. a T ′-induced natural graph map (f,Ψ): (Γ,G)→ (Γ,G) with cancellation constant C
such that (f,Ψ) is homotopic to f̄k via γ′k.

Now set γ = γ′k ◦ γ̄k, then (f,Ψ) is homotopic to graph(ψ) via γ. It remains to ensure that
either (f,Ψ) is an immersion or it preserves cores and core(f,Ψ) is eventually degenerate.

By the bounded cancellation lemma, no bivalent basepoint is mapped to a univalent
basepoint as all natural edges are longer than the cancellation constant C. In particular,
the natural graph map (f,Ψ) preserves cores. If no inner natural edge of (Γ,G) (as a
vertex in Gk) is part of a directed cycle in L, then the restriction core(f,Ψ) is eventually
degenerate.

Otherwise, we can iteratively collapse all pretrivial natural edges of (Γ,G) and still get a
tight graph with natural edges longer than C and a nondegenerate core. Replace the graph
(Γ,G), homotopy equivalence γ′k, and (f,Ψ) with the new data produced by the iterative
collapses; this ensures (f,Ψ) has no pretrivial edges. As (f,Ψ) is a natural graph map
with no pretrivial edges and the natural edges of (Γ,G) are longer than the cancellation
constant C, the graph map (f,Ψ) is an immersion by Lemma 2.5.

Proposition 3.2 (Extend). Let q : (Ω,O) → (Ω,O) be an automorphic immersion that
permutes basepoints on a nondegenerate graph (Ω,O).

There is an algorithm that takes a π1-nonsurjective q as input and constructs a nonde-
generate graph (∆,D), a homotopy equivalence δ : (Ω,O) → (∆,D), and an automorphic
expansion p : (∆,D)→ (∆,D) that is homotopic to q via δ.

Proof. Suppose q is a π1-nonsurjective automorphic immersion on a nondegenerate graph
(Ω,O). Find the stable subgraph (Ω′,O′) for q. If it is degenerate, then q is an expansion
and we are done: set (∆,D) = (Ω,O), δ the identity map, and p = q.

Now assume (Ω′,O′) is not degenerate. Since q is automorphic, it restricts to an
unbased graph isomorphism of the stable subgraph (Ω′,O′). As q is π1-nonsurjective,
(Ω′,O′) is proper. So collapsing (Ω′,O′) in (Ω,O) produces:

1. a nondegenerate graph (∆,D),

2. a T ′-induced homotopy equivalence δ : (Ω,O)→ (∆,D) for some maximal topological
forest T ′ in Ω′, and

3. a T ′-induced automorphic graph map p : (∆,D)→ (∆,D) homotopic to q via δ and
with degenerate stable subgraph.

This process may have produced pretrivial edges. The immersion assumption on q implies
pretrivial edges are disjoint from periodic vertices. Iteratively collapsing pretrivial edges
produces a nondegenerate graph and induces an automorphic expansion.
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Theorem 3.3 (Ascend). Let p : (∆,D) → (∆,D) be an automorphic expansion that per-
mutes basepoints on a nondegenerate graph (∆,D) and α : graph(G) → (∆,D) be a ho-
motopy equivalence. Suppose (f,Ψ): (Γ,G) → (Γ,G) is a natural graph map that either is
an immersion or has an eventually degenerate core. Furthermore, assume graph(Ψ|G) is
homotopic to p via α; here G is identified with the union of Ψ-periodic components of G.

There is an algorithm that takes p, α, and (f,Ψ) as input and constructs a nondegenerate
graph (Ω,O), a homotopy equivalence ω : graph(top(Γ,G))→ (Ω,O), and an automorphic
immersion q on (Ω,O) homotopic to graph(top(f,Ψ)) via ω.

Proof. Let (∆,D), p, α, (Γ,G), and (f,Ψ) be given as in the hypothesis of the theorem.
Assume G is the union of Ψ-periodic components of G, the goal is to extend α to a homotopy
equivalence from graph(G). Note that all components are Ψ-preperiodic since G had finitely
many components.

1. If G = G, then exit the loop.

2. Suppose Γv is a component of G \G and Γf(v) a component of G.

3. Set Ψv = α ◦ graph(Ψ|Γv
) : graph(Γv)→ (∆,D).

4. Factor Ψv = ιv ◦ αv into a simplicial immersion ιv : S(Ψv) → (∆,D) and homotopy
equivalence αv : graph(Γv) → S(Ψv). Enlarge (∆,D) to include (disjoint union)
S(Ψv), p to include ιv, G to include Γv, and α to include αv.

5. The new p is still an automorphic expansion as no periodic edges/vertices were in-
troduced. Furthermore, graph(Ψ|G) is still homotopic to p via α. Restart loop.

The loop will stop since all components of G were preperiodic. Hence now G = G, p is
an automorphic expansion on (∆,D), and graph(Ψ) is homotopic to p via α.

Let (Ω0,O0) = relα(Γ,G) be the partial blow-up relative to top(α), q0 = relα(f,Ψ) the
induced automorphic natural graph map homotopic to graph(top(f,Ψ)) via the homotopy
equivalence α : graph(top(Γ,G))→ (Ω0,O0) that extends α. Recall that (∆,D) is subgraph
of (Ω0,O0) that is q0-invariant, the restriction of q0 to (∆,D) is p, and q0 induces (f,Ψ)
up to graph isomorphism upon collapsing (∆,D). Set N = 3 · rank(top(Ω0,O0))− 1.

Case 1: core(f,Ψ) is eventually degenerate. Then core(q0)k has image in the
subgraph (∆,D) if k ≥ N . For any k ≥ N , we can construct the Stallings graph S(qk0 )
for qk0 = ιk ◦ ωk where ωk is a homotopy equivalence and ιk is a simplicial immersion.
By the discussion following Lemma 2.6, we can construct qk : S(qk0 ) → S(qk0 ) such that
ιk ◦ qk = q0 ◦ ιk and qk ◦ ωk = ωk ◦ q0. Since q0 is automorphic, so is qk.

As core(ιk) has image in (∆,D) and the restriction of q0 to (∆,D) is p, we get
ιk ◦ qk|core(S(qk0 )) = p ◦ core(ιk). Since ιk and p are immersions, so is the restriction

qk|core(S(qk0 )). In particular, the restriction has image in core(S(qk0 )) and the core is a

qk-invariant subgraph. In fact, the restriction, which we now denote by core(qk), is an
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expansion since ιk is simplicial and p an expansion. Consequently, the inner natural edges
of tight(S(qk0 )) grow exponentially in length as k →∞. We now find and fix a k ≥ N such
that all inner natural edges of tight(S(qk0 )) are longer than 2C(q0).

We set (Ω,O) = tight(S(qk0 )) and use the deformation retraction τ : S(qk0 ) → (Ω,O)
to replace qk with a homotopic rel. (Ω,O) graph map q′k : S(qk0 ) → S(qk0 ) that preserves
the tightening (Ω,O). As qk preserved cores, so does q′k and core(qk) = core(q′k). Let
q = tight(q′k) : (Ω,O) → (Ω,O) be the restriction of q′k to (Ω,O). The graph map q is
homotopic to qk via the deformation retraction τ and homotopic to graph(top(f,Ψ)) via
τ◦ωk◦α. The graph map q may fail to be natural if (Ω,O) has exceptional branch points. By
Lemma 2.6, an exceptional branch point is mapped to the C(q0)-neighborhood of a branch
point or bivalent basepoint. After applying an appropriate bivalent homotopy around such
branch points, we may assume q is natural and still preserves cores, C(q) = 2C(q0), and
all inner natural edges of (Ω,O) are longer than C(q). The homotopy produces at most
one pretrivial inner natural edge in each component of (Ω,O). Collapse pretrivial edges if
necessary and assume q has no pretrivial edges and core(q) is once again an automorphic
expansion.

It remains to show that q is an immersion. As q is a natural graph map with no
pretrivial edges, it is enough to verify injectivity of the derivative at branch points. For
a contradiction, suppose dqv maps two distinct nontrivial tangent vectors at v to the
nontrivial tangent vector (ε, σ) at q(v); let ε be the initial half-edge of oriented natural
edge e. Since q is natural and preserves cores, the natural edge e is contained in core(Ω,O)
and hence longer than C(q). This violates bounded cancellation by the same argument as
in the proof of Lemma 2.5.

Case 2: (f,Ψ) is an immersion. Set K = K(q0) + C(q0), C = 2C(q0), and k = 1.
Enter a loop:

1. Given an integer k ≥ 1, construct the Stallings graph S(qk0 ) for qk0 = ιk ◦ ωk.

2. As q0 restricts to the immersion p on the invariant subgraph (∆,D) and induces the
immersion (f,Ψ) upon collapsing (∆,D), the restriction of ωk to (∆,D) is simply a
subdivision. Set (∆k,Dk) to be the ωk-image of (∆,D).

3. The subgraph (∆k,Dk) has two natural edge structures: 1) its abstract natural edges
as a graph; 2) natural edges inherited from the ambient graph tight(S(qk0 )). The
inherited natural edges partition an abstract natural edge into at most 2

3(N + 1)
segments.

4. If the abstract natural edges in (∆k,Dk) are all longer than 2
3(N +1) ·C ·KN−1, save

k and exit the loop. Otherwise, restart the loop with k + 1.

Since the restriction of q0 to (∆,D) is the expansion p, the lengths of abstract natural
edges of (∆n,Dn) grow exponentially as n→∞ and the loop must eventually stop. Use the
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algorithm in Proposition 2.7 with q0 and k as input to construct a homotopy equivalence
ωk : (Ω0,O0) → S̄k and a natural graph map qk : S̄k → S̄k homotopic to q0 via ωk, where
S̄k = tight(S(qk0 )); the graph map qk has Lipschitz and cancellation constants K and C
respectively. Note that qk is automorphic and (∆k,Dk) is the ωk-image of (∆,D) as well.
As p, the restriction of q0 to (∆,D), was already natural, the homotopy between p and the
restriction of qk to (∆k,Dk) via ωk is supported in the abstract natural edges of (∆k,Dk).

As in the proof of Theorem 3.1, form a directed graph Gk whose vertices are the
inherited natural edges in (∆k,Dk) and there is a directed edge Ei → Ej if qk(Ei) contains
Ej ; Gk has at most N vertices. Let S∗ be the inherited natural edges in (∆k,Dk) shorter
than C and S the union of S∗ and inherited natural edges on a directed path from S∗ in
Gk. Since qk is K-Lipschitz and the shortest directed path in Gk from a natural edge in S∗
to S has at most N natural edges on it, every natural edge in S is shorter than C ·KN−1.
The natural edges in S will be short.

By the pigeonhole principle, every abstract natural edge of (∆k,Dk) has an inherited
natural edge longer than C ·KN−1 and the short inherited natural edges form a qk-invariant
subforest of (∆k,Dk). Collapse this subforest in S̄k to get a graph (Ω,O) with a sub-
graph (∆′,D′) corresponding to (∆k,Dk). Most importantly, all inherited natural edges in
(∆′,D′) are longer than C. Set κ : S̄k → (Ω,O) to be the canonical forest collapse homotopy
equivalence and ω = κ ◦ ωk ◦ α. The induced automorphic graph map q : (Ω,O)→ (Ω,O)
has cancellation constant C as well and is homotopic to qk via κ. Then q is homotopic to
graph(top(f,Ψ)) via ω, has a restriction to the q-invariant (∆′,D′) that is homotopic to
p via κ ◦ ωk, and induces (f,Ψ) up to graph isomorphism upon collapsing (∆′,D′). Since
the short inherited natural edges formed a subforest and the restriction of qk to (∆k,Dk)
was homotopic to the immersion p rel. abstract branch points, the q-pretrivial edges form
a subforest of (∆′,D′). Iteratively collapse pretrivial edges until q has no pretrivial edges.

It remains to show that q is an immersion and, as in the first case, it is enough to verify
injectivity of the derivative at branch points. For a contradiction, suppose dqv maps two
distinct nontrivial tangent vectors at v to the nontrivial tangent vector (ε, σ) at q(v); let ε
be initial half-edge of the oriented natural edge e. As q induces the immersion (f,Ψ) upon
collapsing (∆′,D′), e must be contained in (∆′,D′) and thus longer than C. This violates
bounded cancellation and we are done.

Application

In this section, we list some algorithmic problems that can now be solved. Fix a free
group Fk with basis a1, . . . , ak. The standard rose is a rose Rk with k petals along with
an isomorphism/marking µ : Fk → π1(Rk) that identifies ai with the i-th petal. There is a
direct way of turning an endomorphism φ : Fk → Fk into a cellular map φ̄ : Rk → Rk such
that π1

(
φ̄
)
◦ µ = µ ◦ φ.
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The algorithm for constructing stable images.

Input: An endomorphism φ : Fk → Fk.
Output: A basis for the stable image φ∞(Fk) =

⋂∞
i=1 φ

i(Fk) in terms of a1, . . . , ak.

The steps. Let φi = φ|φi(F ) : φi(Fk)→ φi(Fk) for any i ≥ 1. It follows from the definition

that φ∞(Fk) = φ∞i (φi(Fk)). By the Hopfian property, ψ = φk is injective. Let Fr = φk(Fk)
with a basis b1, . . . , br; the basis can be algorithmically computed in terms of a1, . . . , ak
using Stallings factorization of φ̄k. Then ψ̄ : Rr → Rr is a π1-injective cellular map. The
algorithm for finding automorphic expansions takes ψ̄ as input and produces:

• a graph (∆,D), a homotopy equivalence α : graph(Rr)→ (∆,D), and

• an automorphic expansion p : (∆,D)→ (∆,D) homotopic to graph(ψ̄) via α.

Compute the based homotopy inverse for top(α) to get a based homotopy equivalence
β : top(∆,D)→ Rr. The restriction of β to the basepoint’s vertex rose in (∆,D) represents
the stable image ψ∞(Fr):

• that p is automorphic means the basepoint’s vertex rose represents a free factor of
Fr contained in ψ∞(Fr);

• that p is an expansion means reduced based loops in top(∆,D) with infinitely many
iterated based-homotopic preimages are contained in the basepoint’s vertex rose.

If the basepoint’s vertex rose is degenerate, then the stable image is trivial and we
return the trivial element. Otherwise, the homotopy equivalence β and the petals of the
vertex rose determine a basis for ψ∞(Fr) = φ∞(Fk) in terms of b1, . . . , br ∈ Fr ≤ Fk.

The algorithm for constructing fixed point subgroups.

Input: An endomorphism φ : Fk → Fk.
Output: A basis for the fixed point subgroup Fix(φ) = {x ∈ Fk : φ(x) = x}.

The steps. Use the previous algorithm to find a basis for the stable image φ∞(Fk). Let
φ∞ = φ|φ∞(Fk). By definition, Fix(φ) ≤ φ∞(Fk) and Fix(φ) = Fix(φ∞). It is evident

from the algorithm that φ∞(Fk) is a free factor of φk(Fk) and φ∞ is an automorphism. An
algorithm due to Bogopolski–Maslakova [BM16] finds the basis for the fixed point subgroup
of free group automorphisms (See also [FH18, Proposition 9.10]). Hence, we can compute
a basis for the fixed point subgroup Fix(φ) = Fix(φ∞).

The algorithm for constructing periodic conjugacy classes.
Input: An injective endomorphism φ : Fk → Fk.
Output: A nontrivial element x ∈ Fk and integer i ≥ 1 such that φi(x) is conjugate to x
or terminates with no output if no such pair exists.

We will call such conjugacy classes [x] [φ]-periodic.
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Sketch of algorithm. The algorithm for finding automorphic expansions produces:

• a graph (∆,D), a homotopy equivalence α : graph(Rk)→ (∆,D), and

• an automorphic expansion p : (∆,D)→ (∆,D) homotopic to graph(φ̄) via α.

As p is an expansion, any nontrivial [φ]-periodic conjugacy class [x] in Fk is represented by
a nontrivial reduced (unbased) loop in the periodic vertex roses of D. As p is automorphic,
i.e. its restriction to the periodic vertex roses is a homotopy equivalence, the problem of
finding a nontrivial [φ]-periodic conjugacy class [x] reduces to the problem of finding a
nontrivial homotopically-periodic reduced loop in a homotopy equivalence of roses. An
algorithm due to Feighn-Handel [FH18, Corollary 16.4] (dynamically) solves the latter
problem (i.e. without invoking word-hyperbolicity).

The algorithm for constructing properly invariant cyclic subgroups.

Input: An injective endomorphism φ : Fk → Fk.
Output: A nontrivial element x ∈ Fk and integer i ≥ 1 such that φi(〈x〉) is conjugate to
a proper subgroup of 〈x〉 or terminates with no output if no such pair exists.

We will call such a cyclic group 〈x〉 properly invariant.

Sketch of algorithm. The algorithm for finding automorphic expansions produces:

• a graph (∆,D), a homotopy equivalence α : graph(Rk)→ (∆,D), and

• an automorphic expansion p : (∆,D)→ (∆,D) homotopic to graph(φ̄) via α.

Since p is an expansion, there is a computable number L = L(p) such that the iterated
pullback Λ̂L[φ] (defined below) determines properly invariant cyclic subgroups if nonempty.
See [Mut20, Remark 3.12] and also the remark after [Mut21, Proposition 5.5] for details.

Claim. If φ has a properly invariant cyclic subgroup, then Λ̂i[φ] is nonempty for all i ≥ 1.

In particular, if Λ̂L[φ] is empty, then φ has no properly invariant cyclic subgroups and
we are done, modulo a proof of the claim.

Proof of claim. Suppose x ∈ Fk is nontrivial and φn(x) = y−1xdy for some n ≥ 1, d ≥ 2,
and y ∈ Fk. We need to show Λ̂i[φ] is nonempty for all i ≥ 1. The iterated pullback

Λ̂i = Λ̂i[φ] is the set of conjugacy classes [φi(Fk) ∩ gφi(Fk)g−1] as [[g]] ranges over the
φi(Fk)-double cosets and g /∈ φ(Fk). Iterated pullbacks can be constructed using topological
pullbacks [Sta83]. There is an “inclusion” of Λ̂i+1 in Λ̂i given by φi+1(Fk) ≤ φi(Fk);
furthermore, the equality φn(x) = y−1xdy implies φ2n(x) = (yφn(y))−1xd

2
yφn(y). So it is

enough to show that Λ̂j is nonempty for some j ≥ n. Specifically, we will show Λ̂2n−m is
nonempty for some nonnegative m < n.

First define ψ : Fk → Fk by u 7→ yφn(u)y−1. Observe that ψ(x) = xd and x /∈ ψ∞(Fk)
since the restriction of ψ to ψ∞(Fk) is an automorphism — an automorphism cannot map
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an element to a proper power. Let x ∈ ψm(Fk) but x /∈ ψm+1(Fk) with 0 ≤ m. If
x = ψm(z) with z /∈ ψ(Fk), then the equality ψ(x) = xd implies ψ(z) = zd by injectivity of
ψm. Replace x with z if necessary and assume x /∈ ψ(Fk), or equivalently y−1xy /∈ φn(Fk).
Once again let y−1xy ∈ φm(Fk) but y−1xy /∈ φm+1(Fk) with 0 ≤ m < n.

If y−1xy = φm(z) with z /∈ φ(Fk), then the equality

φ2n(x) = φn(y)−1y−1xyφn(y)φ2n(x)φn(y)−1y−1x−1yφn(y)

implies (by injectivity of φm and inequality m < n)

φ2n−m(x) = φn−m(y)−1zφn−m(y)φ2n−m(x)φn−m(y)−1z−1φn−m(y);

moreover, g = φn−m(y)−1zφn−m(y) /∈ φ(Fk) as z /∈ φ(Fk) and m < n. In particular,
[φ2n−m(x)] is a nontrivial conjugacy class supported in [φ2n−m(Fk) ∩ gφ2n−m(Fk)g

−1]; the
latter is an element of Λ̂2n−m since g /∈ φ(Fk) and we are done.

The algorithm for (dynamically) detecting hyperbolicity.

Input: An injective homomorphism φ : A→ F where A ≤ F is a free factor.
Output: A correct yes/no answer to whether the HNN extension

F∗A = 〈F, t | t−1xt = φ(x) ∀x ∈ A〉 is word-hyperbolic.

Sketch of algorithm. The proof of [Mut21, Proposition 7.1] is essentially an algorithm for
constructing the canonical invariant free factor system F for [φ]. By [Mut21, Theorem 7.5],
the HNN extension F∗A is word-hyperbolic if and only if the restriction of [φ] to F has
neither periodic conjugacy classes nor properly invariant cyclic subgroups. Thus, we can
detect word-hyperbolicity by combining the last two (dynamical) algorithms.
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